Principles and Functional Requirements
for Records in Electronic Office Environments

MODULE 1
Overview and Statement of Principles
CONTENTS

1 INTRODUCTION 4
   1.1 Scope and purpose 4
   1.2 Audience 5
   1.3 Related standards 5
   1.4 Structure and use 6

2 GOOD PRACTICE: ELECTRONIC RECORDS AND THE ROLE OF
   SOFTWARE 8

3 GUIDING PRINCIPLES 9
   3.1 Records-related principles 9
   3.2 Systems-related principles 10

4 IMPLEMENTATION ISSUES 12
   4.1 Components of successful electronic business information management 12
   4.2 Risks and mitigations 13
   4.3 Financial and organisational sustainability of electronic systems 15

5 OTHER FUNCTIONAL REQUIREMENTS REFERENCED AND
   EVALUATED 17

6 GLOSSARY 20
1 INTRODUCTION

A variety of functional specifications for records management software has been developed in the international community. In 2006, the International Council on Archives agreed to develop a harmonised, generic suite of recordkeeping functional requirements for software products based on existing jurisdiction-specific specifications, and to do so in a manner consistent with the International Standard on Records Management, ISO 15489. It is hoped that this suite of guidelines and functional requirements will assist jurisdictions that are developing, or looking to adopt, their own functional specifications, as well as inform the update and revision of previously existing standards. The application of this set of functional requirements is not only meant to inform the development of electronic records management software, but also to aid in the incorporation of recordkeeping functionality into generic business information systems software products, as well as specific line-of-business systems. These specifications can also be used by the private sector (for example, multinational corporations) as a stand-alone tool.

Principles and Functional Requirements for Records in Electronic Office Environments was sponsored by the International Council on Archives as a project in its Electronic Records and Automation Priority Area, lead by George Mackenzie, Director of the National Archives of Scotland. Adrian Cunningham (National Archives of Australia) was Project Coordinator. Archives New Zealand (Stephen Clarke) acted as the Secretariat for the project. Other participating countries included Cayman Islands (Sonya Sherman), United Kingdom – England and Wales (Richard Blake), Germany (Andrea Hänger and Frank Bischoff), Malaysia (Mahfuzah Yusuf and Azimah Mohd Ali), Netherlands (Hans Hofman), Scotland (Rob Mildren and Steve Bordwell), South Africa (Louisa Venter), Sweden (Göran Kristiansson), France (Olivier de Solan) and the United States (Mark Giguere). The project was also supported by the Australasian Digital Recordkeeping Initiative (ADRI), a collaborative venture sponsored by the Council of Australasian Archives and Records Authorities. ADRI member Queensland State Archives (Rowena Loo and Anna Morris) contributed to the drafting of Module 3.

1.1 Scope and purpose

The aim of the Principles and Functional Requirements for Records in Electronic Office Environments project is to produce globally harmonised principles and functional requirements for software used to create and manage electronic records in office environments. There currently exist a number of jurisdiction-specific functional requirements and software specifications. The project’s objective is to synthesise this existing work into requirements and guidelines to meet the needs of the international archival community and to enable that community to liaise, in a consolidated manner, with the global software industry.

The objectives of the project are to:

- enable better recordkeeping in organisations at all levels of government regardless of juridical domain;
• support the business needs of an organisation by enabling greater effectiveness and efficiency of the operations;
• provide, through wider deployment of automated recordkeeping functionality, enhanced abilities to support auditing activities;
• improve capabilities to comply with statutory mandates specified in various information-related legislation (for example, data protection and privacy);
• ensure good governance (for example, accountability, transparency and enhanced service delivery) through good recordkeeping;
• increase general awareness of automated recordkeeping capabilities via the dissemination of key principles; and
• maximise cross-jurisdictional consistency regarding the articulation of recordkeeping functional requirements and to enable the global archival community to speak with one voice to the software vendor community.

The primary focus of this suite of guidelines and requirements is the creation and management of electronic records. While the modules support the long-term preservation of digital records, processes to achieve this are beyond the scope of the project. It is anticipated that the application of the requirements will be global in nature. Therefore, it is impossible, given the wide juridical range of potential applications, to include detailed implementation guidelines. In addition, as the ultimate testing environment for the basis of these modules is yet to be determined, inclusion of specific software test cases or scripts was deemed beyond the scope of the modules.

1.2 Audience
There are four key audiences for these modules:

• software developers and vendors – including non-records management software, so this document can serve as a universal benchmark for recordkeeping compliance;
• jurisdictional standard-setters – so these modules can serve as either the baseline for nascent standards development efforts, or as a basis for evaluating the already existing electronic records management standards;
• government agencies – so that all business functions can be evaluated against, and facilitated via, the incorporation of automated records management capabilities; and
• private-sector organisations – so that they can incorporate automated electronic records management into their business operations.

1.3 Related standards
The requirements are aligned with the records management principles in the International Standard on Information and Documentation – Records Management – Part 1 – General, ISO 15489, which sets out the records management requirements that
also apply when records are captured and managed within electronic records management systems.


The requirements are core, high-level and generic requirements for records. Readers seeking guidance in other areas of software functionality not addressed in this document should refer to other more detailed specifications such as US DoD 5015.2 and MoReq2. Readers should also take account of other relevant jurisdiction-specific standards, statements of requirements and specifications.

1.4 Structure and use

The suite of guidelines and functional requirements is organised into three modules:

- **Module 1: Overview and Statement of Principles**: background information, organisation, fundamental principles and additional context;
- **Module 2: Guidelines and Functional Requirements for Records in Electronic Offices**: a global high-level statement of core and optional requirements, including application guidelines and a compliance checklist; and

Module 2 is intended for use by organisations seeking to implement dedicated electronic records management systems. It is meant to be read in conjunction with Module 1.

Module 3 is intended for use by organisations wishing to incorporate records functionality into business systems. It is meant to be read in conjunction with Module 1.

Several non-mutually exclusive use scenarios are presented below to exemplify how these modules might be used:

- Reviewing recordkeeping functionality in existing software – an organisation could use these modules as a checklist to establish which required and desirable recordkeeping functions are present in deployed, non-recordkeeping software.
- Integrating electronic records management software into a business system – an organisation could use Module 3 to selectively incorporate specific records management functionality into existing business systems.
- Using a design specification for in-house software development – an organisation’s IT staff could use Module 3 during their software design and testing documentation of software development efforts.
• Evaluating software considered for purchase – an organisation could use Module 2 as a basis for evaluating and comparing capabilities of commercial, off-the-shelf electronic records management software.

• Procuring, deploying and configuring electronic records management software – an organisation could use Module 2 to form the basis of a functional requirements statement in formulating a request for proposal for electronic records management software procurement and implementation. The requirements presented in these modules may be tailored to suit the individual requirements of organisations, depending on their business needs.

• Designing/re-designing software products during software enhancement cycles – software developers could use Modules 2 and/or 3 as a checklist of potential functionalities that may warrant consideration and/or inclusion in upcoming planned releases of established software products (not necessarily limited to electronic records management software products).

• Developing jurisdiction-specific specifications and standards – an organisation could use these modules as either the basis of its own juridical electronic records management specification or as a comparative resource when considering the revision of existing local electronic records management standards. Jurisdiction-specific requirements may be added to the generic requirements presented in these modules.
2 GOOD PRACTICE: ELECTRONIC RECORDS AND THE ROLE OF SOFTWARE

As organisations introduce new technologies and new methods for undertaking work, older methods and procedures for controlling records may become less effective. In many organisations, valuable records are kept in centralised databases or shared directories. Alternatively, and not mutually exclusively, they may be widely distributed and stored on the decentralised hard drives of individuals’ personal computers. Further complicating the situation, in either of these scenarios not all of the stored information may constitute records.

In either case, measures needed for integrity and authenticity may be overlooked and the electronic records may not be available, understandable and usable to the organisation or the relevant archival institution.

Organisations that already rely on electronic records to conduct and document business, or that are interested in eliminating paper records from their systems, are seeking solutions to issues of authenticity, management and retention of electronic records. The decisions that organisations make today about the capability of their information systems, the organisation and structure of their information resources, and the policies and practices for recordkeeping in the digital environment will have a significant impact on the types of strategies and methods that archival institutions can employ to ensure long-term preservation of records with archival value.

Because the issues of archival management, especially in the electronic environment, are closely linked to the design of systems and the establishment of new information policies, archivists have been driven to examine a broader set of records management issues in order to carry out the archival function in the digital environment. Software provides business process owners, records managers and archivists with substantial means of complying with the practice of good electronic recordkeeping.
3 GUIDING PRINCIPLES

Successful organisations need information systems for making, keeping and using authentic evidence (that is, records) of business activity to meet their business needs and legal obligations. In the electronic environment, the development and implementation of such systems should be both driven by the organisation’s business needs and informed by the following principles:

3.1 Records-related principles

1 Electronic business information has to be actively managed and reliably maintained as authentic evidence of business activity.
As business processes become more completely automated, the electronic information generated by such activities may serve as the only evidence of specific transactions or decisions. Maintenance of this evidence in the form of fixed records is necessary for operational viability and accountability of the organisation. This involves identifying a set of electronic information that will serve as the evidential record.

2 Business information has to be linked to its business context through the use of metadata.
In order for information to have the capability of functioning as a record, it is necessary to augment that information with additional data (that is, metadata) that places it in the context of the business operations and computing environment in which it was created. In the case of line-of-business systems accomplishing uniform transactions, this context is derived from the system and its documentation. In other systems, however, such contextual information must be appended to the record as it is necessary to provide the record with sufficient longevity for interpretation and to maximise its value and utility as evidence of business activity.

3 Business information has to be kept and must remain accessible to authorised users for as long as required.
Design and deployment of business information software must ensure that records can be searched for, retrieved and rendered in accessible formats and media for as long as is required for business and legal purposes. In this context, organisations should avoid the misuse of digital rights management technology and encryption.

4 Business information has to be able to be disposed of in a managed, systematic and auditable way.
A hallmark of appropriate recordkeeping is the retention and appropriate disposition of records generated by business processes according to specified rules. Systems need to be able to dispose of records in a systematic, auditable and accountable way in line with operational and legal requirements.
3.2 Systems-related principles

5 Systems should support good business information management as an organic part of the business process.
Although it is not necessarily appreciated as such, good recordkeeping practices are an integral part of any business process. When automating any business process, one should always evaluate the advisability of simultaneous integration of recordkeeping software.

6 Systems for capturing and managing business information have to rely on standardised metadata as an active, dynamic and integral part of the recordkeeping process.
Automated recordkeeping solutions offer powerful capabilities to access and attach standardised contextual information, via standardised vocabularies and taxonomies, to record content at different times during the life of the record.

7 Systems have to ensure interoperability across platforms and domains and over time.
Electronic evidence, in the form of records, often has operational or juridical requirements for persistence over periods of time that may exceed the lifespan of the hardware or software that created it. As such, record information must be able to be presented in a manner that is understood and able to be modified, if necessary, for migration to other technology platforms.

8 Systems should rely as far as possible on open standards and technological neutrality.
Many software products that create or manage records are developed using proprietary implementations. Hardware or software dependencies can have adverse effects on access and preservation of record material in the long term. Use of open standards ameliorates these technological dependencies.

9 Systems should have the capacity for bulk import and export using open formats.
Electronic records resulting from a business process and managed by recordkeeping software may contain hardware or software dependencies. Recordkeeping software should ideally incorporate capabilities to remove these dependencies via support for bulk re-formatting as part of ingest or export capability or, at a minimum, via non-proprietary encoding of record metadata.

10 Systems must maintain business information in a secure environment.
For security purposes, systems automating a business process often incorporate safeguards that limit which actions particular individuals can take with electronic information (for example, viewing, printing, editing, copying or transmitting). Systems must not allow unauthorised modifications to any records (including metadata), and where authorised modifications are performed, they must be fully documented.

1 ‘Standardised’ may refer to an agreed organisational metadata schema or to the adoption/adaptation of a jurisdictional, national or international metadata standard.
11 **As much metadata as possible should be system generated.**
Users are typically unwilling to interrupt their workflow more than three times in the accomplishment of tasks ancillary to executing the primary activity. It may be impractical and/or unnecessary to expect end-users to supply much of the metadata. Systems should be designed and implemented in a manner that allows automatic population of record metadata fields.

12 **It should be as easy as possible for users to create/capture records of business activity.**
It is necessary to design systems/software that automate recordkeeping in a way, ideally, that makes such recordkeeping largely ‘invisible’ to the end-users.
4 IMPLEMENTATION ISSUES

4.1 Components of successful electronic business information management

Good software is only one component of successful electronic business information management in organisations. Other components include:

- **Policy frameworks** – concomitant with the deployment of software with recordkeeping functionality, it is necessary to conduct an analysis of existing information management and security policies and laws to address areas where policy revision may need to occur due to gaps in software capabilities. This includes policies relating to recordkeeping responsibilities for different categories of employees, records retention and disposal. Associated with the policy frameworks that guide and support good business information management software may be tools such as classification schemes and metadata models.

- **Business process analysis** – it is a preferred practice that process analysis should ideally precede any IT deployment. This includes identifying, articulating and potentially reallocating roles and responsibilities.

- **Project management** – any IT deployment requires careful planning and monitoring across a series of discrete stages. Project management techniques are powerful tools that provide both temporal and fiscal accountability for such efforts.

- **Change management** – deployment of automation within an organisation changes not only the manner in which business processes are accomplished, but the roles and responsibilities of end-users of the system. Care must be taken to adequately prepare the human component of any IT deployment for these changes. Failures in the implementation of records software often result primarily from shortcomings in change management rather than from any shortcomings in the technology.

- **Risk management** – as with any IT system deployment, the decision to automate recordkeeping should be informed by an analysis of risks associated with an analysis of alternatives that are formulated as part of the business case. Ongoing post-implementation risk assessment should be incorporated into the organisation’s overall risk management framework.

- **Sustainability** – development and maintenance of automated systems generally straddle organisations’ budgeting cycles. When automating recordkeeping, care must be taken, as part of the development of a business case for the automation effort, to provide for the ongoing viability, operations and maintenance of the system.

- **Capability development** – software automation requires organisations to develop or enhance the technical capabilities of affected line staff, as well as others in the organisation, who in some cases may have no familiarity with the technology. Care must be taken to develop these capabilities, as well as the
technical capabilities of the organisation necessary to support and maintain automation efforts.

- **Quality management** – deployment of automated solutions requires the development within an organisation of the capability to evaluate and accept software performance according to a variety of criteria. Additionally, criteria related to the impact of software deployment to a business process must be developed and evaluated.

- **Configuration management** – it is necessary to ensure that the software not only has the necessary recordkeeping capabilities, but that the capabilities are configured correctly and in such a way that enables it to operate appropriately in an organisation’s IT infrastructure.

- **Corporate culture** – it is vital that the culture of the organisation reinforces the value and importance of good recordkeeping and that it is something that is a standard expectation of all employees. Such expectations need to be regularly articulated by the chief executive through line management channels.

### 4.2 Risks and mitigations

Risks typically associated with records software deployments fall into many categories. Some of these include:

- **software selection risks** – making an appropriate determination, from a range of commercial off-the-shelf products, of which product is best suited for deployment in an organisation;

- **software development risks** – experiencing difficulties related to dependence on software vendors or developers, including delays in releases of the software or inability of the vendor to be able to diagnose and fix software problems;

- **technical compatibility risks** – inadequately accounting for difficulties in integrating the electronic records management software into the IT infrastructure of the organisation;

- **communication risks** – inability to effectively communicate progress and/or issues regarding the deployment to end-users or management;

- **documentation risks** – inability to implement adequate programmatic recordkeeping surrounding software deployment efforts;

- **project management risks** – inability to appropriately track schedules or concomitant resource expenditures can threaten the overall stability of a project;

- **training risks** – ineffective training on new software solutions that can engender difficulties in end-user acceptance of new technologies;

---

• **risks associated with initial declines in productivity** – until end-users become familiar with new automated business processes, overall productivity may initially suffer due to the introduction of software innovations;

• **staff turnover risks** – changes in either senior management championing, or in the responsibilities of key personnel implementing, a software deployment can have an adverse effect on the overall project;

• **scalability risks** – the extent to which software may need to ‘scale up’ to organisation-wide deployment needs to be considered and planned for at an early stage in the project; and

• **organisational change** – business environments often change significantly during the development or life of a records or business system. These changes may include the size, structure, work processes, functions and mandates of the organisation itself.

Any organisation deploying software should acknowledge that some prudent risk-taking is necessary when it comes to adopting new technology and changing business processes. One means of mitigating the risks associated with such deployments is to mount a pilot deployment in a section of the organisation before expanding use of the software enterprise-wide.

To minimise the risks associated with a pilot launch, the project team should:

• establish clear performance objectives and evaluation criteria;

• involve and continually encourage pilot project participants to use the system;

• perform prototype work sessions with the software before customising it;

• finalise system design;

• develop quality acceptance methodology;

• expand the pilot through incremental roll-out to other areas of the organisation and inclusion of other record formats; and

• assure that the pilot’s requirements are measurable and clearly understood by participants.

Enumerating problems that the project team is likely to encounter, and identifying possible ways in which to avoid or promptly address those situations, will minimise disruptions during the pilot. To better prepare for these eventualities:

• a review of similar projects will help to identify potential problems that may be encountered during an electronic records management pilot; and

• conducting pre-planning brainstorming exercises with the project team can help anticipate the challenges ahead.

For each potential problem, develop a contingency plan. This best-management practice will increase the governance body’s confidence in the team’s ability to successfully implement electronic records management organisation-wide. The following illustrate successful strategies for dealing with frequently encountered problems:
• Organisations often encounter resistance to changing work processes as electronic records management is introduced. Many organisations find that introducing newly hired employees, at the beginning of their employment, to the importance of good records management is the best strategy for conquering resistance to change regarding electronic records management.

• Ensure a version of the software will be up and running for use by the project pilot team before roll-out to the first group of pilot participants. Selecting individuals to train and work with the software during this pre-pilot phase will develop a cadre of relatively sophisticated users who can liaise with the pilot project participants. When the quality of this pre-pilot phase is deemed acceptable, you can formally launch your electronic records management pilot.

• Managing users’ expectations throughout the pilot will minimise the risk of pilot failure. This can be achieved, in part, through user training and constant communication with pilot project participants. Establishing communication vehicles for the rest of your organisation (for example, an organisation-wide view of your pilot project website or online newsletter), keeping staff apprised of the progress being made vis-a-vis electronic records management, reminds people that the project is ongoing. This will make deployment in their area easier if the solution is adopted organisation-wide.

4.3 Financial and organisational sustainability of electronic systems

Each juridical environment likely has established processes designed to ensure the financial and organisational stability of any capital investment. Although potentially conceptually over-simplified, the totality of analyses comprising a business case can be thought of as the collective means by which an organisation ensures this stability in the case of an IT investment, such as recordkeeping software.

In its simplest form, a business case articulates a variety of analyses that substantiate an acquisition proposal for the expenditure of an organisation’s capital in accordance with its capital asset strategy and inventory control of such investments. In the case of recordkeeping software acquisition, such a business case might consist of:

• acquisition strategy – summary of the funding requirement for project stages (including into future fiscal years);

• program management – detailing program management team membership and responsibilities;

• enterprise architecture – delineation of how a particular software acquisition relates to other existing and planned IT components within an organisation;

• analysis of alternatives – describing alternatives that were considered, and lifecycle costs and returns on investments associated with each;

• risk management – description of the major risks for the selected alternative, indicating the probability of occurrence, impact and mitigation strategies;
• **performance goals** – articulating which of the organisation’s strategic goals are supported by the proposed deployment, inclusive of existing baseline measures and resulting performance improvements according to specific proposed performance metrics;

• **project management** – presentation of detailed work breakdown structures delineating accomplishments and the cost of attaining major project milestones; and

• **change management** – for line-of-business and records staff.
5 OTHER FUNCTIONAL REQUIREMENTS REFERENCED AND EVALUATED

The aim of this project is to harmonise multiple existing jurisdiction-specific electronic recordkeeping software specifications in a manner that complies with the general requirements set forth in the International Standard on Records Management, ISO 15489, Parts 1 and 2 (2001), and the International Standard on Records Management Processes – Metadata for Records, Part 1 – Principles and Part 2 – Conceptual and Implementation Issues, ISO 23081 (2006 and 2007). The jurisdiction-specific functional requirements considered in preparing these modules are as follows:

Archives New Zealand
Electronic Recordkeeping Systems Standard, June 2005

Bundesministerium des Innern, Germany
DOMEA Concept Requirement Catalogue 2.0, June 2005
http://www.kbst.bund.de/cln_011/nn_838524/SharedDocs/Anlagen-kbst/Domea/domea-requirements-catalogue-2-0,templateId=raw,property=publicationFile.pdf/domea-requirements-catalogue-2-0.pdf

Cornwell Management Consultants plc
(for the European Commission Interchange of Documentation between Administrations Programme)
Model Requirements for the Management of Electronic Records, March 2001
http://www.cornwell.co.uk/edrm/moreq.asp#moreqdownload

Department of Defense, United States

Department of Defense, United States
http://jitc.fhu.disa.mil/recmgf/dod50152v3_13jun06.pdf

DLM Forum Working Group for the Development of MoReq

European Commission
Model Requirements for the Management of Electronic Records Update and Extension, 2008, (MoReq2 Specification)
http://www.moreq2.eu/

Indiana University
Requirements for Electronic Records Management Systems, 2002
http://www.indiana.edu/~libarch/ER/requirementsforrk.doc

International Council on Archives
Authenticity of Electronic Records, ICA Study 13-1, November 2002
International Council on Archives
*Authenticity of Electronic Records*, ICA Study 13-2, January 2004

National Archives and Records Administration, United States
*Functional Requirements and Attributes for Records Management Services*, December 2005

National Archives of Australia

National Archives of Australia
*Functional Specifications for Business Information Systems Software*, October 2006

Public Record Office Victoria
*Standard for the Management of Electronic Records PROS 99/007 (Version 1)*, April 2000

Public Record Office Victoria

Riksarkivet, National Archives of Norway

State Records of South Australia

State Records of South Australia

State Records of South Australia
*Across Government EDRMS Panel of Products Procurement and Pre-Implementation – Guideline, Version 1*, October 2004

The National Archives, United Kingdom
Revision – Final Version, 2002

The National Archives, United Kingdom
Revision – Final Version, 2002

The National Archives, United Kingdom
Revision – Final Version, 2002
The National Archives, United Kingdom
Requirements for Electronic Records Management Systems, 4: Implementation Guidance, 2004

The National Archives, United Kingdom
Rationale for the Functional Requirements for Electronic Records Management Systems, 2002
Link to various documents from:
http://www.nationalarchives.gov.uk/electronicrecords/rat2002/

The National Archives, United Kingdom
Requirements to Sustain Electronic Information Over Time, March 2006

The National Archives, United Kingdom
Functional Requirements for the Sustainability of Electronic Records Management Systems, March 2006
# 6 GLOSSARY

This Glossary is a subset of the more complete glossary of terms found in Modules 2 and 3.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
</table>
| Archives                    | Materials created or received by a person, family or organisation, public or private, in the conduct of their affairs and preserved because of the enduring value contained in them or as evidence of the functions and responsibilities of their creator, especially those materials maintained using the principles of provenance, original order and collective control; permanent records.  
Note: This definition differs to the IT sphere where it refers to ‘a copy of one or more files or a copy of a database that is saved for future reference or for recovery purposes in case the original data is damaged or lost.’  
<p>| Archival authority          | The archival agency, archival institution, archival program agency or program responsible for selecting, acquiring and preserving archives, making them available and approving destruction of other records |
| Business case               | A structured proposal for business improvement that functions as a decision package for organisational decision-makers. Includes an analysis of business process performance and associated needs or problems, proposed alternative solutions, assumptions, constraints and a risk-adjusted cost-benefit analysis. |
| Business system             | For the purposes of this document, an automated system that creates or manages data about an organisation’s activities. Includes applications whose primary purpose is to facilitate transactions between an organisational unit and its customers – for example, an e-commerce system, client relationship management system, purpose-built or customised database, and finance or human resources systems. |
| COTS                        | Commercial off-the-shelf software                                                                                                                                                                         |
| Disposition                 | A range of processes associated with implementing retention, destruction or transfer decisions which are documented in disposition or other instruments. Source: ISO 15489, Part 1, Clause 3.9 |
| Electronic record           | A record on electronic storage media, produced, communicated, maintained and/or accessed by means of electronic equipment.                                                                               |
| End-user                    | In IT, the term end-user is used to distinguish the person for whom a hardware or software product is designed from the developers, installers and servicers of the product.                                       |
| Electronic records management software | Specialised software used to automate the management of records.                                                                                                                                                 |
| Human factors               | The study of how humans behave physically and psychologically in relation to particular environments, products or services. In a typical human factors or usability study, a group of hired or volunteer test subjects that represent future end-users is given tasks to do with a working prototype or early version of a product. |
| Information                 | Knowledge communicated or received. The result of processing, gathering, manipulating and organising data in a way that adds to the knowledge of the receiver.                                                   |</p>
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information technology</td>
<td>A term that encompasses all forms of technology used to create, store, exchange and use information in its various forms (business data, voice conversations, still images, motion pictures, multimedia presentations and other forms, including those not yet conceived).</td>
</tr>
<tr>
<td>Metadata</td>
<td>Structured or semi-structured information, which enables the creation, management and use of records through time and within and across domains.</td>
</tr>
<tr>
<td></td>
<td>Structured information that describes and/or allows users to find, manage, control, understand or preserve other information over time.</td>
</tr>
<tr>
<td>Migration</td>
<td>The act of moving records from one system to another, while maintaining the records’ authenticity, integrity, reliability and useability. Migration involves a set of organised tasks designed to periodically transfer digital material from one hardware or software configuration to another, or from one generation of technology to another.</td>
</tr>
<tr>
<td></td>
<td>Source: Adapted from ISO 15489, Part 1, Clause 3.13 and Part 2, Clause 4.3.9.2.</td>
</tr>
<tr>
<td>Pilot project</td>
<td>An experimental initiative lasting for a limited time, the results of which are systematically evaluated.</td>
</tr>
<tr>
<td>Proprietary software</td>
<td>Software that is owned exclusively by a single company that carefully guards knowledge about the technology or the product’s inner workings.</td>
</tr>
<tr>
<td>Record (noun)</td>
<td>Information in any format created, received and maintained as evidence and information by an organisation or person, in pursuance of legal obligations or in the transaction of business.</td>
</tr>
<tr>
<td>Recordkeeping</td>
<td>The systematic creation, use, maintenance and disposition of records to meet administrative, legal, financial and societal needs and responsibilities.</td>
</tr>
<tr>
<td>Reformat</td>
<td>To create a copy with a format or structure different from the original, especially for preservation or access.</td>
</tr>
<tr>
<td>Return on investment</td>
<td>For a given use of money in an enterprise, the return on investment is how much profit or cost saving is realised. A return on investment calculation is sometimes used along with other approaches to develop a business case for a given proposal.</td>
</tr>
</tbody>
</table>